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The Power to Detect Disease Associations with Mitochondrial DNA
Haplogroups
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Genetic variation of mitochondrial DNA (mtDNA) has been linked to a number of multifactorial diseases, but
there is currently no tool available to predict the optimal size for these investigations. We used a simulation-based
(Monte Carlo) permutation test to generate power curves for European mtDNA haplogroup studies, to derive a
universal equation to enable power calculations for prospective studies across the globe, and to show that very
large cohorts are required to reliably detect an association with complex human diseases. In some populations,
geographical variation in haplogroup frequencies will prevent the reliable detection of subtle haplogroup associations
with uncommon disorders.
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Human mtDNA codes for 13 essential polypeptide com-
ponents of the mitochondrial respiratory chain that gen-
erates the principal source of intracellular energy, ATP
(DiMauro and Schon 2003). mtDNA is inherited almost
exclusively through the maternal line and is highly poly-
morphic. Human populations can be divided into several
mtDNA haplogroups on the basis of specific SNPs scat-
tered throughout the mitochondrial genome, reflecting
mutations accumulated by a discrete maternal lineage.
Each mtDNA haplogroup forms a mutually exclusive
category (Torroni and Wallace 1994). Among Europe-
ans, 95% of the population belongs to 1 of 10 haplo-
groups: H, I, J, K, M, T, U, V, W, and X (Torroni et al.
1996). Given the fundamental role of the mitochon-
drial genome in cellular metabolism, there have been a
number of studies investigating the association between
mtDNA lineages and multifactorial diseases and aging
(e.g., De Benedictis et al. 1999; Ruiz-Pesini et al. 2000;
Carrieri et al. 2001; Niemi et al. 2003; Mancuso et al.
2004; van der Walt et al. 2004). Despite initially prom-
ising results, often reaching high levels of statistical sig-
nificance (a), it has rarely been possible to replicate the
findings of the original reports. There are a number of
explanations for the inconsistency, including difficulties
in matching cases and controls and when there is a gen-
uine variation in the size of a genetic effect in different
populations. However, the consistent inability to repro-

duce the original result brings into question the power
of individual studies.

The standard statistical method for analyzing haplo-
group distributions is to use a contingency table2 # NH

and the x2 test, where NH is the number of haplogroups.
However, low counts in the less common haplogroups
will tend to inflate the x2 value and lead to a false-positive
result (Roff and Bentzen 1989). This can been tackled
in one of two ways, either by performing Fisher’s exact
test for each haplogroup in turn, with an appropriate
correction for multiple significance testing, or by group-
ing the less frequent haplogroups. Both approaches po-
tentially mask a real difference between two haplotypes,
particularly if they are uncommon in the general pop-
ulation. In addition, correcting for multiple significance
testing is not straightforward, since each haplogroup fre-
quency is dependent on the others. To address this prob-
lem, we developed a Monte Carlo permutation test to
determine the exact type I error (false-positive rate) as-
sociated with a specific data set under study. (See the
“Methods” section in appendix A.) This Monte Carlo
permutation test has the advantage that it is not depen-
dent on any prior assumptions about the distribution of
the data or the number of haplogroups under study. We
then compared the results of the Monte Carlo simula-
tions with the results of a number of published studies.

In most cases, direct simulation generated a level of
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Table 1

Comparison of Published mtDNA Haplogroup Association Studies with the Results of the Present Study

PHENOTYPE SOURCE

DATA FROM PREVIOUSLY PUBLISHED STUDY

EXACT abNo. of Controls No. of Cases aa

Centenarian De Benedictis et al. 1999 51 26 .017 .0226
Sperm motility (males only)c Ruiz-Pesini et al. 2000 180 365 .0311 .1435
Alzheimer disease, with an APOE �4 alleled Carrieri et al. 2001 119 94 .018 .0233
Dementia, with Lewy bodies Chinnery et al. 2000 179 84 NR .1347
Parkinson disease van der Walt et al. 2004 340 609 NR .1374
Longevity (190 years): Niemi et al. 2003

General controls 400 225 .01 .011
Comparison with healthy infants 257 225 .00005 .0003

Amyotrophic lateral sclerosis Mancuso et al. 2004 150 222 .016e .0204
Parkinson disease Pyle et al. 2005 447 455 !.001 !.0001

NOTE.—Our reanalysis of the original data in table 3 of Mancuso et al (2004) revealed a significant difference in the overall haplogroup
distribution between the patients and controls ( ; ). Five of the cells in the x2 table had expected counts of !5, thus potentially2x p 18.54 a p .016
elevating the x2 value and leading to an inappropriately low a. This was confirmed by Monte Carlo simulation in which the exact a was much
greater, .0204. Our subsequent power studies show that very large sample sizes are required to reliably detect a modest difference in haplogroup
frequencies between two groups. This does not mean that it is impossible to detect a difference with a smaller study size, but it does mean that
the chance of detecting such a difference is much lower.

a NR p not reported.
b Determined by Monte Carlo simulation; 10,000 iterations.
c Comparison of males with asthenozoospermia and males who were nonasthenozoospermic. Haplogroups K and U were merged in this study.
d Patients with Alzheimer disease who carry an APOE �4 allele compared with patients with Alzheimer disease who do not carry an APOE

�4 allele,
e Mancuso et al (2004) report “the frequency of haplogroups H, J, K, T, U, V, W and X did not differ between the two groups” (p. 160).

Figure 1 Examples of mtDNA haplogroup power curves determined by simulation—haplogroup H (A), haplogroup J (B), and haplogroup
I (C)—on the basis of control data for the European population. The abscissa shows the number of cases and controls simulated (e.g., 400 p
400 cases and 400 controls). Black squares/solid line p .05 significance level; green circles/dashed line p .01 significance level; red triangles/
dotted line p .001 significance level. The figures on the graph describe the percentage change in haplogroup frequency associated with a
particular group of curves; for example, 100%F p haplogroup increases by 100%, with the remaining cases distributed evenly over the remaining
nine haplogroups. For clarity, only the .05 level data is shown for haplogroup I.

significance (a) that was greater than the theoretical value
based on an assumed null x2 distribution (table 1). For
some studies, the simulated result was not significant
by conventional criteria. As expected, these studies were
thorough in determining the frequency of rare haplo-
groups (defined as !5% of controls). However, because
of the limited study size, a number of haplotype groups
contained fewer than five individuals. The simulations
confirmed that, under these circumstances, the x2 value
is artificially elevated, and tabulated values of x2 should

not be used to determine statistical significance. This
problem can be avoided by applying Cochran’s “rule of
thumb” that no expected frequency be !1 and that �20%
of the expected frequencies be !5 (Cochran 1954). If the
results of a study do not comply with this rule, then
direct simulation provides an unbiased and reliable al-
ternative. This is often the case for mtDNA association
studies, in which 6 of the 10 European haplogroups are
each found in !10% of the population but account for
17% of the total (Torroni et al. 1996).
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Table 2

Parameter Values for the Power, Used in Equation (A1)

Variable a p .05 a p .01 a p .001

A �28 � 5 �13 � 2 �7 � 1
x0 2.6 � 0.2 5.0 � 0.1 7.4 � 0.1
d 2.4 � 0.1 2.5 � 0.1 2.8 � 0.1

NOTE.—These values can be used with equation (A2)
to determine the minimum number of cases and controls
required for a given power.

Figure 2 The power to detect an association between mtDNA haplogroups and disease. In all situations, the number of disease cases is
assumed to be equal to the number of control subjects. A, Monte Carlo simulation data for the European haplogroups H, I, J, K, and U. Data
from the individual simulations, including those shown in figure 1, are shown on the same graph for different changes in the percentage level
of a particular haplogroup at the significance level. This demonstrates the scatter of the data points. B, These data collapse onto aa p .05
simple sigmoid curve, with the X-axis scaling based on standard binomial theory. Nc is the number of disease cases (equal to the number of
controls), p0 is the frequency of the haplogroup in the control population, and p1 is the frequency of the haplogroup in the cases. Data are
shown for the significance level (for and , see fig. A1). Both the data and the theoretical curve describe the samea p .05 a p .01 a p .001
sigmoidal shape, with the European haplogroup simulation data (with the 10 major European haplogroups plus “others” being equivalent to
a table) shifted to the right. C, Simulations (symbols) and theoretical curve (red line) for populations with different numbers of2 # 11 2 # 2
mutually exclusive haplogroups. The simulated subdivisions could correspond to superhaplogroups, haplogroup clusters, or any mutually
exclusive sequence variants in any population. All of the data collapse onto a single curve when the X-axis is normalized by the number of
haplogroups, NH, raised to the power 0.37 (eq. [1]). Data are shown for the significance level (for and , see figurea p .05 a p .01 a p .001
A2). D, Example showing the number of cases and controls required to generate 90% power at the .05 significance level for a study of the 10
major European haplogroups ( to account for the !5% that do not fall into these 10 groups and are considered “others”). HaplogroupN p 11H

proportions in the control group are based on published values (haplogroup in controls [black line]; in controls [blue line];H p 0.41 I p .02
in controls [red line]) (Torroni et al. 1996).J p .11

We used a Monte Carlo simulation to determine the
power to detect a difference between cases and controls
at different levels of significance, on the basis of the known
distribution of the 10 major European haplogroups (Tor-
roni et al. 1996) (see fig. 1 for examples). We simulated
both increases and decreases in the frequency of a each
haplogroup, with the difference distributed proportion-
ally between the remaining haplogroups, thus simulating
a typical exploratory mtDNA haplogroup study for which
there is no a priori assumption of an association with
any one specific haplogroup. Figure 2A shows simulated
data for five haplogroups, at . As this plot shows,a p .05
the power values do not have a simple relationship with
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Table 3

Scaled Number of Cases Required to Generate a Given
Level of Power at a Given Level of Significance

POWER

(%)

SCALED NO. OF CASES

AND CONTROLS (Nscaled)

a p .05 a p .01 a p .001

50 3.6 5.5 7.8
75 6.0 8.1 10.7
90 8.5 10.8 13.8

NOTE.—The values are derived from a Bolzmann fit (eq.
[A1]; ) of simulations shown in fig. 2C. The scaled2r 1 0.98
number of cases is defined in equation (1). The scaled num-
ber of cases and controls required to generate a given power
can be read from these curves or calculated from equation
(A1) and equation (A2). For example, for a control popu-
lation with NH haplogroups, the number of cases and con-
trols required to detect a change in the proportion of a given
haplogroup from p0 in controls to p1 in the cases is given
in equation (2). This approach was used to generate the
example shown in figure 2D.

Figure 3 Algorithm to determine the power of an mtDNA hap-
logroup association study at a given level of statistical significance.
The algorithm is based on the assumption that no specific haplogroup
is suspected of being associated with a disease. a p statistical signif-
icance; NH p the number of haplogroups (mutually exclusive geno-
types) in a given study; p0 p the frequency of the allele in control
subjects; p1 p the frequency of the allele in individuals with the disease;
NCmin p the minimum number of cases to generate a given power.

the raw number of cases and controls. In figure 2B, we
normalize the X-axis, using a relationship derived from
standard binomial theory (Armitage et al. 2002), and
show that there is a simple relationship between the
power and the normalized number of cases and controls.
These results were compared with the theoretical curve
for two haplogroups (fig. 2B for ; fig. A1 fora p .05

and ). The curve described by the sim-a p .01 a p .001
ulation data for the 10 European haplogroups was sim-
ilar in shape to the theoretical curve (correspond-2 # 2
ing to 2 haplogroups) but was displaced to the right. To
explore the effect of different numbers of haplogroups
on the position power curve, we then simulated other
theoretical haplogroup distributions within the popula-
tion (2, 5, or 20 discrete categories). These subdivisions
could correspond to superhaplogroups, haplogroup clus-
ters, or any mutually exclusive sequence variants in any
population. The entire data set collapsed to a single uni-
versal curve when the X-axis was normalized by the
number of haplogroups, NH, raised to the power 0.37,
by use of the expression

2( )N p � pC 1 0

N p , (1)scaled 0.37( ) ( )p 1 � p �p 1 � p N[ ]1 1 0 0 H

where Nc is the number of cases with a disease (assumed
to be equal to the number of controls), p0 is the frequency
of the haplogroup in the control population, and p1 is
the frequency of the haplogroup in the disease group (fig.
2C for ; fig. A2 for and ). Thea p .05 a p .01 a p .001
power � SD ( ) was determined by the stan-0.37 � 0.01
dard approach of curve fitting. For the European haplo-
group data studied here, , reflecting additionalN p 11H

category “other” for individuals not belonging to the 10
major haplogroups.

Equation (1) can be used to determine the minimum
number of disease cases (NCmin) and control subjects re-
quired for a specific level of power,

( ) ( )p 1 � p �p 1 � p1 1 0 0
0.37N p N N , (2)Cmin scaled H 2( )( )p � p1 0

by use of the scaling value, Nscaled, derived from the uni-
versal curves at each significance level a (table 2). Ninety
percent power is achieved when Nscaled is 8.5 for a p

, 11 for , and 14 for , as derived.05 a p .01 a p .001
from figure 2C (table 3). This approach can be used for
any number of mutually exclusive genotypes in any pop-
ulation (fig. 3). Resolving equation (2) in terms of the
odds ratio (OR) is complex, but equation (2) can be used
by determining the proportion of cases that correspond
to a specific OR for a given haplogroup, by use of the
standard equation

p /(1 � p )0 0OR p . (3)
p /(1 � p )1 1

The ORs, based on one published control data set (Tor-
roni et al. 1996), corresponding to percentage changes
in haplogroup frequency for the 10 European haplo-
groups are shown in tables A1 and A2. An example of
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this approach is given in figure 2D, with use of the Eu-
ropean haplogroup distribution for 90% power at a p

. These results also show the limited power of mod-.05
erate study sizes. With no prior reason to suspect an as-
sociation with haplogroup H, ∼6,000 cases and ∼6,000
controls are required to form a study with 90% power
to detect a 10% change in the frequency of haplogroup
H in European populations (corresponding to an OR
11.18). Studies with only 500 cases and 500 controls
would have only 90% power to detect 135% increase
in the frequency of haplogroup H, corresponding to an
OR 11.75. For less common haplogroups or more-subtle
changes in haplogroup frequency, even greater sample
sizes will be required (fig. 2D).

mtDNA is inherited almost exclusively down the ma-
ternal line and undergoes little, if any, intermolecular
recombination. This makes the haplotype distribution in
a given sample exquisitely sensitive to minor population
genetic bottlenecks, which lead to differences in haplo-
group frequency over short geographical distances. These
factors increase the chance of detecting a spurious dif-
ference between cases and controls (false-positive or type
I error). The standard approach to this problem is to
consider the first study result as preliminary and to then
generate a hypothesis that should be tested on an inde-
pendent cohort. Here, we present a single equation that
can be applied to mtDNA haplogroup studies around the
globe, enabling a priori power calculations for explor-
atory or confirmatory studies. However, subtle changes
in haplogroup frequency will require massive cohorts.
In some populations, the frequency of mtDNA haplo-
groups in controls varies considerably over short geo-
graphic differences (Ghezzi et al. 2005), which makes it
impossible to collect an adequately sized homogeneous
study cohort, particularly for uncommon diseases. The
same applies to population-genetics studies based on
haplogroup comparisons between control populations
across the globe, which have been used to deduce pat-
terns of population migration (Mishmar et al. 2003; Ruiz-
Pesini et al. 2004). These studies are equally likely to suffer
from type I error, and they often show subtle differences
in haplogroup frequency but require adequate sample
sizes to demonstrate and confirm geographic differences
in haplogroup distribution. An inability to reproduce the
result with an adequately powered study would question
the validity of the original result.
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Appendix A

Methods

To determine whether there is significant heterogeneity
in a given data set, the standard approach is to calculate
x2, which is the sum of squares for the absolute difference
between observed and expected values relative to the ex-
pected value, for each cell in a contingency table. For
large sample sizes, statistical significance can be deter-
mined by comparing the calculated x2 value with tabu-
lated values at specified degrees of freedom. However,
when the number of observed counts is low, this ap-
proach is not reliable. Under these circumstances, the
statistical significance can be determined by directly sim-
ulating the x2 distribution for a given data set. The Monte
Carlo permutation test we present here is based on this
principle and was adapted from the method of Roff and
Bentzen (1989). For a given data set, the program gen-
erates a series of contingency tables by randomly as-
signing individual observations to each cell. The x2 value
is then calculated for each simulated data set and is com-
pared with the original x2 value. The probability of ob-
serving the original data set under the null hypothesis
equates to the proportion of simulated x2 values greater
than the x2 value for the original data set. Power sim-
ulations used the same algorithm, with simulation of
different alterations in the haplogroup distribution for
studies of different sizes. Subsequent analyses, curve fit-
ting, and the generation of power curves were performed
with Microcal Origin software (v. 6).

The power in figure 2B and 2C is also well described
( ) by a Boltzmann equation,2R 1 0.98

A � 100
Power p 100 � , (A1)(N �x )/dscaled 01 � e

which is easy to apply, where the power is expressed as
a percentage and Nscaled is the scaled X-axis of figure 2,
defined in equation (1). A, x0, and d are parameters of
the fit (values given in table 2) allowing the power to
be derived for any haplogroup distribution, significance
level, and study size. The Boltzmann equation

Power � A
N p x � d ln (A2)scaled 0 ( )100 � Power

can be solved to give the value of Nscaled required to
achieve a given power.

These equations are equally applicable to increases or
decreases in the haplogroup frequency.
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Figure A1 Monte Carlo simulation data for the European haplogroups H, I, J, K, and U. Data are from the individual simulations (fig.
1) and the theoretical curve for a table based on binomial theory for the significance levels and . These data describe2 # 2 a p .01 a p .001
a simple sigmoid curve, with the X-axis based on standard binomial theory. Nc is the number of disease cases (which is equal to the number
of controls), p0 is the frequency of the haplogroup in the control population, and p1 is the frequency of the haplogroup in the cases. Both the
data and the theoretical curve describe the same sigmoidal shape, with the European haplogroup simulation data (with the 10 major European
haplogroups plus “others” being equivalent to a table) shifted to the right.2 # 11

Figure A2 Simulations (symbols) and theoretical curve (red line) for populations with different numbers of mutually exclusive2 # 2
haplogroups. The simulated subdivisions could correspond to superhaplogroups, haplogroup clusters, or any mutually exclusive sequence variants
in any population. All of the data collapse onto a single curve when the X-axis is normalized by the number of haplogroups, NH, raised to the
power 0.37 (eq. [1]). Data are shown for significance level and .a p .01 a p .001
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Table A1

ORs Corresponding to an Increase in Haplogroup Frequency for the 10 European Haplogroups

INCREASE IN

HAPLOGROUP

FREQUENCY

(%)

OR BY HAPLOGROUP

(FREQUENCY IN CONTROLS)

H
(.41)

I
(.02)

J
(.11)

K
(.08)

M
(.01)

T
(.13)

U
(.15)

V
(.03)

W
(.02)

X
(.02)

10 1.18 1.10 1.11 1.11 1.10 1.12 1.12 1.10 1.10 1.10
20 1.39 1.20 1.23 1.22 1.20 1.24 1.24 1.21 1.20 1.20
30 1.64 1.31 1.35 1.33 1.30 1.36 1.37 1.31 1.31 1.31
40 1.94 1.41 1.47 1.45 1.41 1.49 1.51 1.42 1.41 1.41
50 2.30 1.52 1.60 1.57 1.51 1.62 1.65 1.52 1.52 1.52
60 2.74 1.62 1.73 1.69 1.61 1.76 1.79 1.63 1.62 1.62
70 3.31 1.72 1.86 1.81 1.71 1.90 1.94 1.74 1.72 1.72
80 4.05 1.83 2.00 1.93 1.81 2.04 2.10 1.85 1.83 1.83
90 5.07 1.94 2.14 2.06 1.92 2.20 2.26 1.95 1.94 1.94
100 6.56 2.04 2.28 2.19 2.02 2.35 2.43 2.06 2.04 2.04
110 8.91 2.15 2.43 2.32 2.12 2.51 2.61 2.17 2.15 2.15
120 13.24 2.26 2.58 2.46 2.23 2.68 2.79 2.28 2.26 2.26
130 23.81 2.36 2.74 2.59 2.33 2.85 2.98 2.40 2.36 2.36
140 88.50 2.47 2.90 2.73 2.43 3.03 3.19 2.51 2.47 2.47
150 … 2.58 3.07 2.88 2.54 3.22 3.40 2.62 2.58 2.58
160 … 2.69 3.24 3.02 2.64 3.42 3.62 2.74 2.69 2.69
170 … 2.80 3.42 3.17 2.75 3.62 3.86 2.85 2.80 2.80
180 … 2.91 3.60 3.32 2.85 3.83 4.10 2.97 2.91 2.91
190 … 3.02 3.79 3.47 2.96 4.05 4.36 3.08 3.02 3.02
200 … 3.13 3.99 3.63 3.06 4.28 4.64 3.20 3.13 3.13
210 … 3.24 4.19 3.79 3.17 4.52 4.93 3.32 3.24 3.24
220 … 3.35 4.40 3.96 3.27 4.77 5.23 3.43 3.35 3.35
230 … 3.46 4.61 4.13 3.38 5.03 5.55 3.55 3.46 3.46
240 … 3.58 4.83 4.30 3.48 5.30 5.90 3.67 3.58 3.58
250 … 3.69 5.07 4.47 3.59 5.59 6.26 3.79 3.69 3.69
260 … 3.80 5.30 4.65 3.70 5.89 6.65 3.91 3.80 3.80
270 … 3.92 5.55 4.84 3.80 6.20 7.07 4.04 3.92 3.92
280 … 4.03 5.81 5.02 3.91 6.53 7.51 4.16 4.03 4.03
290 … 4.15 6.08 5.22 4.02 6.88 7.99 4.28 4.15 4.15
300 … 4.26 6.36 5.41 4.13 7.25 8.50 4.41 4.26 4.26
310 … 4.38 6.65 5.61 4.23 7.64 9.05 4.53 4.38 4.38
320 … 4.49 6.95 5.82 4.34 8.05 9.65 4.66 4.49 4.49
330 … 4.61 7.26 6.03 4.45 8.48 10.30 4.79 4.61 4.61
340 … 4.73 7.59 6.25 4.56 8.94 11.00 4.92 4.73 4.73
350 … 4.85 7.93 6.47 4.66 9.43 11.77 5.05 4.85 4.85
360 … 4.96 8.29 6.70 4.77 9.96 12.61 5.18 4.96 4.96
370 … 5.08 8.66 6.93 4.88 10.51 13.54 5.31 5.08 5.08
380 … 5.20 9.05 7.17 4.99 11.11 14.57 5.44 5.20 5.20
390 … 5.32 9.46 7.41 5.10 11.74 15.72 5.57 5.32 5.32
400 … 5.44 9.89 7.67 5.21 12.43 17.00 5.71 5.44 5.44

NOTE.—Values are derived from equation (3) and a published data set (Torroni et al. 1996).
These values will differ for control groups with a different background-haplogroup frequency.
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Table A2

ORs Corresponding to a Decrease In Haplogroup Frequency for the 10 European Haplogroups

DECREASE IN

HAPLOGROUP

FREQUENCY

(%)

OR BY HAPLOGROUP

(FREQUENCY IN CONTROLS)

H
(.41)

I
(.02)

J
(.11)

K
(.08)

M
(.01)

T
(.13)

U
(.15)

V
(.03)

W
(.02)

X
(.02)

10 .84 .90 .89 .89 .90 .89 .88 .90 .90 .90
20 .70 .80 .78 .79 .80 .78 .77 .80 .80 .80
30 .58 .70 .67 .68 .70 .67 .66 .69 .70 .70
40 .47 .60 .57 .58 .60 .57 .56 .59 .60 .60
50 .37 .49 .47 .48 .50 .47 .46 .49 .49 .49
60 .28 .40 .37 .38 .40 .37 .36 .39 .40 .40
70 .20 .30 .28 .28 .30 .27 .27 .29 .30 .30
80 .13 .20 .18 .19 .20 .18 .18 .20 .20 .20
90 .06 .10 .09 .09 .10 .09 .09 .10 .10 .10

NOTE.—Values derived from equation (3) and a published data set (Torroni et al. 1996). These
values will differ for control groups with a different background-haplogroup frequency.
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J, Alvarez E, Dı́az M, Urriés A, Montoro L, López-Pérez MJ, En-
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